106 research outputs found

    Applying quantitative semantics to higher-order quantum computing

    Full text link
    Finding a denotational semantics for higher order quantum computation is a long-standing problem in the semantics of quantum programming languages. Most past approaches to this problem fell short in one way or another, either limiting the language to an unusably small finitary fragment, or giving up important features of quantum physics such as entanglement. In this paper, we propose a denotational semantics for a quantum lambda calculus with recursion and an infinite data type, using constructions from quantitative semantics of linear logic

    Quantum computations without definite causal structure

    Full text link
    We show that quantum theory allows for transformations of black boxes that cannot be realized by inserting the input black boxes within a circuit in a pre-defined causal order. The simplest example of such a transformation is the classical switch of black boxes, where two input black boxes are arranged in two different orders conditionally on the value of a classical bit. The quantum version of this transformation-the quantum switch-produces an output circuit where the order of the connections is controlled by a quantum bit, which becomes entangled with the circuit structure. Simulating these transformations in a circuit with fixed causal structure requires either postselection, or an extra query to the input black boxes.Comment: Updated version with expanded presentatio

    Modeling Simply-Typed Lambda Calculi in the Category of Finite Vector Spaces

    Get PDF
    In this paper we use finite vector spaces (finite dimension, over finite fields) as a non-standard computational model of linear logic. We first define a simple, finite PCF-like lambda-calculus with booleans, and then we discuss two finite models, one based on finite sets and the other on finite vector spaces. The first model is shown to be fully complete with respect to the operational semantics of the language, while the second model is not. We then develop an algebraic extension of the finite lambda calculus and study two operational semantics: a call-by-name and a call-by-value. These operational semantics are matched with their corresponding natural denotational semantics based on finite vector spaces. The relationship between the various semantics is analyzed, and several examples based on Church numerals are presented

    The Absence of Positive Energy Bound States for a Class of Nonlocal Potentials

    Full text link
    We generalize in this paper a theorem of Titchmarsh for the positivity of Fourier sine integrals. We apply then the theorem to derive simple conditions for the absence of positive energy bound states (bound states embedded in the continuum) for the radial Schr\"odinger equation with nonlocal potentials which are superposition of a local potential and separable potentials.Comment: 23 page

    Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals

    Full text link
    High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat

    The random release of phosphate controls the dynamic instability of microtubules

    Get PDF
    A simple stochastic model which describes microtubule dynamics and explicitly takes into account the relevant biochemical processes is presented. The model incorporates binding and unbinding of monomers and random phosphate release inside the polymer. It is shown that this theoretical approach provides a microscopic picture of the dynamic instability phenomena of microtubules. The cap size, the concentration dependence of the catastrophe times and the delay before observing catastrophes following a dilution can be quantitatively predicted by this approach in a direct and simple way. Furthermore, the model can be solved analytically to a large extend, thus offering a valuable starting point for more refined studies of microtubules dynamics.Comment: 26 pages, 8 figure

    Modeling oscillatory Microtubule--Polymerization

    Get PDF
    Polymerization of microtubules is ubiquitous in biological cells and under certain conditions it becomes oscillatory in time. Here simple reaction models are analyzed that capture such oscillations as well as the length distribution of microtubules. We assume reaction conditions that are stationary over many oscillation periods, and it is a Hopf bifurcation that leads to a persistent oscillatory microtubule polymerization in these models. Analytical expressions are derived for the threshold of the bifurcation and the oscillation frequency in terms of reaction rates as well as typical trends of their parameter dependence are presented. Both, a catastrophe rate that depends on the density of {\it guanosine triphosphate} (GTP) liganded tubulin dimers and a delay reaction, such as the depolymerization of shrinking microtubules or the decay of oligomers, support oscillations. For a tubulin dimer concentration below the threshold oscillatory microtubule polymerization occurs transiently on the route to a stationary state, as shown by numerical solutions of the model equations. Close to threshold a so--called amplitude equation is derived and it is shown that the bifurcation to microtubule oscillations is supercritical.Comment: 21 pages and 12 figure

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
    corecore